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Abstract
We present palaeogenomes of three morphologically unidentified Anatolian equids 
dating to the first millennium BCE, sequenced to a coverage of 0.6–6.4×. Mitochondrial 
DNA haplotypes of the Anatolian individuals clustered with those of Equus hydrun-
tinus (or Equus hemionus hydruntinus), the extinct European wild ass, secular name 
‘hydruntine’. Further, the Anatolian wild ass whole genome profiles fell outside the 
genomic diversity of other extant and past Asiatic wild ass (E. hemionus) lineages. 
These observations suggest that the three Anatolian wild asses represent hydrun-
tines, making them the latest recorded survivors of this lineage, about a millennium 
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1  |  INTRODUC TION

Since its palaeontological description more than a century ago 
(Regalia, 1907), the ‘European wild ass’, Equus hydruntinus (or Equus 
hemionus hydruntinus), has remained an enigmatic taxon (Bennett 
et al., 2017; Boulbes & van Asperen, 2019; Burke et al., 2003; Geigl 
& Grange, 2012; Orlando et al., 2006). This species, which hereinafter 
we will name the hydruntine, was a gracile non-caballine equid, once 
roamed open habitats in Europe and Southwest Asia (Figure 1a) and 
featured in Upper Palaeolithic cave art (Bennett et al., 2017; BernÁldez-
Sánchez & García-Viñas, 2019; Cleyet-Merle & Madelaine, 1991) and 
on Neolithic pottery (Bennett et al., 2017). Its history in the fossil re-
cord starts with the Late Middle or Late Pleistocene and ends within 
the Middle/Late Holocene, when it goes extinct (Boulbes & van 
Asperen, 2019; Crees & Turvey, 2014; Geigl & Grange, 2012).

Early research in the 20th century comparing E. hydruntinus remains 
with those of other equids identified resemblances to diverse taxa, in-
cluding the African asses (E. asinus) and the zebra (E. zebra), the Asiatic 
asses (E. hemionus), or the extinct stenonine horses, leaving its phyloge-
netic position disputed for many decades (Azzaroli, 1991; Davis, 1980; 
Eisenmann & Baylac, 2000; Eisenmann & Mashkour, 2000; Forsten & 
Ziegler, 1995; Stehlin & Graziosi, 1935). Within the last two decades, 
osteological studies on new fossil findings concluded that E. hydrunti-
nus was systematically closer to extant Asian asses, that is, hemi-
ones, than to African asses or zebras (Burke et al., 2003; Eisenmann 
& Mashkour, 1999; Orlando et  al.,  2006) (Figure  1a). Ancient DNA 
analyses of mitochondrial DNA (mtDNA) supported this conclusion: 
partial and complete mtDNA sequences from E. hydruntinus and ex-
tant hemiones (the kiang of Tibet; the kulan of Mongolia; the kulan of 
Turkmenistan; the onager of Iran) were found to cluster together to the 
exclusion of other equids (Bennett et al., 2017; Catalano et al., 2020; 
Orlando et  al.,  2006, 2009). Moreover, these mtDNA studies sug-
gested that the hemione – hydruntine division may represent taxo-
nomic over-splitting (Bennett et al., 2017; Orlando et al., 2006, 2009). 
Bennett et al. (2017) pointed out that in their mtDNA analyses hemi-
ones and hydruntines did not appear reciprocally monophyletic. This 
could be explained by rapid diversification of the E. hemionus lineages, 
including hydruntines, creating an unresolved radiation node (Model 
1 in Figure 1b). Accordingly, hydruntines could also be considered a 

subspecies of E. hemionus, E. h.hydruntinus, similar to the kulan (E. h.
kulan) and onager (E. h. onager), considered E. hemionus subspecies by 
the IUCN (Kaczensky et al., 2015).

However, the phylogenetic patterns described were only based 
on partial mtDNA sequences. Thus, it is possible that analyses of full 
mtDNA and of nuclear loci would reveal different patterns, for exam-
ple, an early hydruntine–hemione split (Model 2 in Figure 1b). In line 
with the early-split idea, osteological analyses have suggested that 
E. hydruntinus carried a number of unique adaptations distinct from 
other hemiones, such as a short and wide muzzle adapted to rela-
tively cold environmental conditions (Boulbes & van Asperen, 2019; 
van Asperen, 2012). Given the equivocal evidence, there have been 
calls for in-depth morphometric analyses (Twiss et al., 2017) and for 
the analysis of nuclear genomic data to resolve the issue (Boulbes & 
van Asperen, 2019; Crees & Turvey, 2014).

Another controversy surrounding the hydruntine involves its 
extinction dynamics. Crees and Turvey  (2014) studied Holocene 
zooarchaeological records of hydruntines along with palaeovegeta-
tion data, suggesting that during the Holocene, the hydruntine range 
was highly fragmented and restricted to regions with relatively open 
habitats, such as the Danube basin and the Anatolian steppe. The 
authors predicted its extinction in the Danube region by the third 
millennium BCE, and in Iran and South Caucasus possibly within the 
first millennium BCE. Other scholars have suggested hydruntines in 
Iran and in Anatolia could have gone extinct during or before the 
second millennium BCE (Mashkour et al., 1999), attributing its ex-
tinction to a combination of factors including increased aridity asso-
ciated with the 4.2-ka event, competition with livestock for pasture 
resources and hunting (Guimaraes et al., 2020). Nevertheless, due 
to the relative rarity of hydruntines in the zooarchaeological record 
(compared to, e.g. red deer) and also due to difficulties in morpholog-
ical identification (Geigl & Grange, 2012; Twiss et al., 2017), the tim-
ing of the hydruntine extinction remained largely uncertain (Boulbes 
& van Asperen, 2019; Crees & Turvey, 2014; Nores et al., 2015).

Here we present the first full genomic data genetically attribut-
able to the hydruntine, obtained from three Anatolian equids from 
first millennium BCE Central Anatolia. The analysis of these palaeog-
enomes allows us to resolve questions on the phylogenetics, demo-
graphic history and extinction dynamics of this taxon.
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later than the latest observations in the zooarchaeological record. Our mitogenomic 
and genomic analyses indicate that E. h. hydruntinus was a clade belonging to ancient 
and present-day E. hemionus lineages that radiated possibly between 0.6 and 0.8 Mya. 
We also find evidence consistent with recent gene flow between hydruntines and 
Middle Eastern wild asses. Analyses of genome-wide heterozygosity and runs of ho-
mozygosity suggest that the Anatolian wild ass population may have lost genetic di-
versity by the mid-first millennium BCE, a possible sign of its eventual demise.
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ancient DNA, Asiatic wild ass, demography, Equus hemionus hydruntinus, population genetics, 
taxonomy
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2  |  MATERIAL S AND METHODS

2.1  |  Archaeological samples

We studied zooarchaeological skeletal samples that were mor-
phologically identified as belonging to equids, excavated in the 
archaeological sites of Çatalhöyük and Çadır Höyük in modern-
day Turkey. Çatalhöyük is a major Ceramic Neolithic period site in 
Central Anatolia, but its upper layers have also yielded remains dat-
ing to the Bronze and Iron Ages, and later periods (Hordecki, 2020; 
Pawłowska, 2020). Çadır Höyük has demonstrated continuous occu-
pation from the Middle Chalcolithic to the Byzantine Era (early fifth 

millennium BCE to 14th century CE) (Ross et al., 2019; Steadman, 
Hackley, et  al.,  2019; Steadman, McMahon, et  al.,  2019). We ge-
netically analysed 11 equid samples from Çatalhöyük and four from 
Çadır Höyük. See the Appendix S1 for further information on the 
sites and the archaeological material.

2.2  |  Radiocarbon dating

We radiocarbon dated all three equid samples that showed Eurasian 
wild ass-related genetic profiles (see Section 2.7 below). For each 
sample, approximately 3 g of bone or tooth material were cut using 

F I G U R E  1 (a) The map shows the geographical locations of Çadır Höyük and Çatalhöyük (the excavation sites where the wild ass remains 
analysed in this study were recovered), as well as the approximate dispersal areas of extant and extinct ass taxa. We avoid showing distinct 
distribution ranges, especially for E. h. hydruntinus, due to scarcity of hydruntine remains in zooarchaeological assemblages and the difficulty of 
morphological distinction between hydruntines and other Eurasian wild asses (see also Bennett et al., 2017; Crees & Turvey, 2014). (b) Models 
summarising two hypotheses regarding the taxonomic position of European wild ass relative to other equid lineages. (c) The locations of three 
ancient hemione individuals and one hemippe individual the partial genomes of which were previously published (Bennett et al., 2022; Fages 
et al., 2019). (d) Timeline of dated E. hydruntinus reportings with samples reported in this study (adapted from Crees & Turvey, 2014).
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non-carbon-based discs attached to a Dremel tool and sent to the 
TÜBİTAK-MAM AMS facility (Gebze, Turkey) for carbon-14 dating. 
The dates were calibrated using the R package ‘Bchron’ using the 
IntCal20 curve (Reimer et al., 2020).

2.3  |  Ancient DNA isolation and sequencing

All pre-PCR experiments were conducted in the Middle East Technical 
University (METU) Ancient DNA Clean Room, in a dedicated laboratory 
for aDNA research, located in a different building from the post-PCR 
laboratory. Samples were subjected to a standard ancient DNA isola-
tion protocol (Dabney et al., 2013), with minor modifications. In brief, 
surfaces of archaeological samples were cleaned with damp paper 
cloth, 100–200 mg of bone or tooth samples were cut using discs at-
tached to a Dremel, were pulverised with mortar and pestle, and trans-
ferred into 2 mL screw-top tubes. Each sample's powder was treated 
with 1 mL extraction buffer (0.45 M EDTA and 0.25 mg/mL Proteinase 
K) in a 37°C rotating incubator for 18 h. Tubes were centrifuged and 
supernatants were added to reservoirs containing 13 mL of binding 
buffer (5 M guanidine hydrochloride, 40% (vol/vol) Isopropanol, 0.05% 
Tween-20 and 90 mM sodium acetate) to bind DNA fragments to 
Qiagen spin columns. DNA fragments were washed twice with a wash-
ing buffer (Qiagen) and fragments were collected after two consecu-
tive elution steps into 50 μL Qiagen EB buffer. Blunt-end ancient DNA 
libraries were prepared using the Meyer and Kircher protocol (Meyer 
& Kircher, 2010) with a single indexing approach. All experiments on 
the Çadır Höyük and Çatalhöyük samples were conducted on different 
days with fresh reagents.

Libraries were sequenced on the Illumina HiSeq 4000 platform 
at SciLife, Stockholm, Sweden. Using 47 thousand–79 million reads 
(median 20 million) obtained in initial low-coverage sequencing 
(Table S1), we identified three equid samples, two from Çadır Höyük 
(cdh008, phalanx; cdh010, calcaneus) and one from Çatalhöyük 
(chh003, tooth), that displayed a wild ass-related genetic signature 
on the Zonkey pipeline (Schubert et al., 2017) (see Section 2.7). We 
further sequenced cdh008 three times, and cdh010 and chh003 
one more time at the same facility; we thus generated 2501 million, 
316 million and 265 million reads in total per sample respectively 
(Table S2).

2.4  |  Data preprocessing

The data were processed following published workflows (Günther 
et  al.,  2015; Kılınç et  al.,  2016); the workflow was applied to all 
samples screening libraries genetically, and also to the libraries of 
the three samples (cdh008, cdh010 and chh003) that were deep-
sequenced. Raw sequencing reads were demultiplexed, adapter 
sequences were removed and paired-end sequencing reads were 
collapsed using AdapterRemoval (v. 2.3.1), requiring a minimum of 
an 11 bp overlap between pairs (Schubert et al., 2016). Collapsed  .
fastq files were aligned to the horse reference genome (EquCab2.0; 

including autosomes, X chromosome, and the mitochondrial ge-
nome) (Wade et  al., 2009) using the aln module of BWA software 
(v. 0.7.15) (Li & Durbin, 2009) with the parameters ‘-n 0.01 -o 2’ and 
seed disabled (“-l 16500”). All alignment files of the same individual 
were merged using SAMtools (v. 1.9) merge (Li et  al., 2009). PCR-
duplicates were removed using FilterUniqueSAMCons.py (Meyer & 
Kircher, 2010); reads with length <35 bp were discarded. Reads with 
a mismatch to fragment length ratio >0.1 and with mapping qual-
ity MAPQ <30 were also removed. The average genome coverage 
for each sample was calculated using filtered reads with the ‘genom-
eCoverageBed’ tool within bedtools2 (Quinlan & Hall, 2010).

2.5  |  Authentication of genetic data and trimming

We studied the authenticity of the data using PMDtools (v. 0.60) 
(Skoglund et al., 2014). Post-mortem damage (PMD) profiles (Briggs 
et  al.,  2007) for each sample were generated with the PMDtools 
‘--deamination’ parameter. Deamination-related cytosine to thymine 
transitions at 5′-end positions were 0.32, 0.29 and 0.36, while av-
erage read lengths were 74, 75 and 67 bp for cdh008, cdh010 and 
chh003 respectively (Figures  S1 and S2, Table  S2), supporting au-
thenticity (Pedersen et al., 2014). Reads were trimmed 10 bp from 
both ends using the ‘trimBAM’ command of the bamUtil software 
(Jun et al., 2015) to remove PMD.

2.6  |  Complete mitogenome sequences

We first generated a complete mitogenome sequence of our high-
est coverage sample cdh008 (mtDNA coverage: 140.04×) as fol-
lows. The .fastq reads were mapped against a linearised reference 
kiang mitogenome (NC_020433.1) where the first 200 bp were 
duplicated at the end. The mapped reads were then remapped 
on the original circular kiang mitogenome using the circular map-
per implemented in Geneious Prime 2023.2 (Dotmatics, Boston, 
MA). Visual inspection of the mapped reads within the Geneious 
browser revealed a sequence insertion within the Control Region 
that was absent from the kiang reference, with a distinct mismatch 
pattern of the reads overlapping both sides of the missing region. 
To characterise this region, a first consensus cdh008 mitogenome 
sequence was produced and manually edited to introduce the few 
starting bases identified on the browser alongside a stretch of Ns 
in-between. After end duplication, the .fastq sequences were rem-
apped on this novel sequence using the local aligner BWA mem. 
The mapped reads were then remapped using the circular mapper 
on the first circularised cdh008 consensus. After removal of the 
soft-clipping annotations, the missing bases could be identified 
and reintroduced into a revised version of the cdh008 consensus, 
used for a final mapping step using the global aligner BWA aln, 
with a seed length of 18 nucleotides (−l 18) followed by remapping 
with the circular aligner as above. The insertion consisted mainly 
of repetitions (possibly 14 copies for cdh008) of a 12-bp motif: 
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RCACCTGTGCAC. We thus obtained a consensus sequence for 
cdh008 without missing bases or ambiguities and complete mi-
togenome sequences for cdh010 and chh003 with <5 ambigui-
ties (R) within repeated motifs, which were deposited to the NCBI 
Genbank (accessions: OP448588, PP101609 and PP101610).

2.7  |  Taxonomy and sex determination

We used the Zonkey pipeline implemented in PaleoMix (v. 1.2.14) 
(Schubert et  al.,  2017) for investigating the taxonomic identity 
of cdh008, cdh010 and chh003, using 158–164 thousand SNPs 
per sample on the Zonkey reference panel. All three samples were 
clustered together with the E. h. onager and E. kiang (Asian wild 
ass) group in PCA and TreeMix, confirming their Eurasian wild ass 
status. Sex estimation was also performed using Zonkey, based on 
autosomal versus X chromosome coverages. For chh003, X chro-
mosome coverage was approximately half the autosomal cover-
age, suggesting this sample was male, while cdh008 and cdh010 
showed similar autosomal and X chromosomal coverage, suggest-
ing they were female.

2.8  |  Phylogenetic analyses of mtDNA data

We used MEGA X (Kumar et  al.,  2018) to construct maximum 
likelihood (ML) and neighbour-joining (NJ) trees. A 361-bp frag-
ment of the mtDNA D-loop, as well as a 16,790-bp consensus 
sequence of the whole mitochondria, were used as reference 
sequences (Genbank). For the ML analysis using 138 published 
D-loop sequences (Table  S3), the substitution model was cho-
sen as Hasegawa–Kishino–Yano (HKY) with a Gamma-distributed 
rate (no invariant sites) using jModeltest (v.0.1.1) (Guindon & 
Gascuel, 2003; Posada,  2008). A maximum composite likelihood 
model was used for NJ tree construction. Nodal support was 
evaluated by 1000 bootstraps. To construct the median-joining 
(MJ) network, 121 partial D-loop samples were trimmed to 249 bp 
based on the longest shared fragment. The MJ network was con-
structed with NETWORK v.5 maximum parsimony post-processing 
(http://​www.​fluxu​s-​engin​eering.​com).

For analyses of the full mitogenome sequences, in addition to 
the three hydruntine sequences obtained as described above, we 
used the following published sequences: a hydruntine from Sicily 
(E. h. hydruntinus) (Catalano et  al.,  2020), three extinct hemip-
pes (E. h. hemippus) (Bennett et al., 2022), as well as five donkeys 
(E. a. asinus), one Somalian wild ass (E. a. somalicus), eight kiangs and 
Mongolian kulans, two Iranian wild asses (E. h. onager), one Turkmen 
kulan (E. h. kulan) (described in Bennett et al., 2022), and the refer-
ence horse mitogenome as outgroup (total 25 sequences). MEGA 
X estimated the best substitution model as HKY with a Gamma-
distributed rate and invariant sites. ML analyses were performed 
using PHYML v2.2.4 (Guindon & Gascuel, 2003) with 100 boot-
straps. Tip dating using Bayesian inference was performed with 

BEAST (v. 1.8.4) (Drummond et al., 2012). For the three Anatolian 
samples produced in this study, as well as one E. hydruntinus sam-
ple (Catalano et al., 2020) C14 dates were calibrated using Calib 
(v. 8) with the IntCal20 curve (Reimer et  al.,  2020; Stuiver & 
Reimer, 1993), whereas for the three E. hemionus hemippus samples, 
estimations from their corresponding study were used (Bennett 
et al., 2022). The equid root age was calibrated using a lognormal 
prior ensuring a median value of 4.3 Mya with a 95% confidence 
interval (95CI) encompassing the most extreme values of the 95CI 
identified in (Vilstrup et al., 2013) (lognormal priors: mean = ‘15.27’ 
stdev = ‘0.1’). An extended Bayesian skyline plot model was used 
with a lognormal effective population size prior with a median of 
6000 and with a wide 95CI (mean = ‘11.0’ stdev = ‘1.0’ offset = ‘3.4’). 
A strict molecular clock was used with a clock rate prior to en-
sure a median value of 2.0E-8 with a 95CI encompassing the most 
extreme values of the 95CI identified in Vilstrup et  al.  (2013) 
(mean = ‘−17.7’ stdev = ‘0.7’). The analysis was run six times for 
500,000,000 steps, logging every 50,000 states and discarding 
the first 10% states as burn-in, resulting in effective sample sizes 
>9000 for all traces in each independent run, and >50,000 for 
the combined runs. Robustness was verified by analysing each log 
and maximum clade credibility tree with median node height using 
LogAnalyser and TreeAnnotator (Drummond et al., 2012). All six 
log and tree files after the removal of the 10% burn-in were com-
bined using LogCombiner (Drummond et al., 2012). Convergences 
were visualised using Tracer (v. 1.6) (Rambaut, 2014) and the best 
tree was drawn using FigTree (v. 1.4.3) (Rambaut, 2014). Final pos-
terior values are available in Table S9.

2.9  |  SNP panel construction

We constructed a SNP panel using 12 published modern-day 
genomes (median coverage 10×) (Huang et  al.,  2015; Jónsson 
et al., 2014; Renaud et al., 2018; Wang et al., 2020): six domesti-
cated donkeys (E .a. asinus) and six Asian wild asses (three E. h. he-
mionus, one E. h. onager and two E. h. kiang) (Table  S3). The data 
were mapped to the horse reference EquCab2.0 using the BWA 
(v0.7.15) mem module with the default parameters. Reads were 
sorted using the SAMtools sort (v.1.9) and PCR duplicates were 
removed using Picard MarkDuplicates (https://​broad​insti​tute.​
github.​io/​picard/​). A mapping quality filter of <20 was applied 
using SAMtools (v.1.9). Multiple libraries from the same individual 
were merged with SAMtools merge (v.1.9). Two horse genomes 
were included as outgroup (Der Sarkissian et  al., 2015; Orlando 
et al., 2013) (Table S3). We performed de novo SNP calling using 
angsd (v. 0.934) (Korneliussen et  al.,  2014) with the SAMtools 
model, implemented as ‘-GL 1’ on the donkey and wild ass data 
separately. We limited de novo SNP calls to positions with depth 
≥4, and required non-missing genotypes across all individuals. A 
total of 31,592,013 and 38,029,882 SNPs were thus called from 
donkeys and wild asses, respectively, and merged into a union. 
Limiting these to autosomal positions, applying a minor allele 
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frequency filter >0.1, a Hardy–Weinberg filter of ‘1e-30’ and 
keeping only biallelic transversion positions yielded 2,146,416 
SNPs, which we refer to as the main SNP panel.

To confirm results from this main SNP panel, we used a published 
equid variation SNP panel (Bennett et al., 2022), derived from the 
Zonkey panel and established using nine genomes of diverse equids 
(Schubert et al., 2017) and filtered to eliminate SNPs in repeat re-
gions (Bennett et  al.,  2022). We further filtered this set to keep 
positions polymorphic in asinus and hemionus and used only trans-
versions, leaving 2,408,064 SNPs. We refer to this as the secondary 
SNP panel.

2.10  |  Genotyping and dataset construction

We genotyped all individuals using either of the SNP panels. 
Modern-day individuals were genotyped using SAMtools (v. 
1.9) mpileup in diploid fashion. Published ancient genomes in-
cluded three ancient onagers ‘Sagzabad’, ‘TepeHasanlu3459’ and 
‘TepeMehrAli’ (Fages et  al.,  2019), and three ancient hemippes 
‘GT64’, ‘Hm_1864’ and ‘Hm_1892’ (Bennett et al., 2022) (note that 
Hm_1892 is coded NMW1308 in mtDNA analyses); we filtered 
their reads for mapping quality >30 and genotyped them with our 
three genomes using sequenceTools (v. 1.4.0.5) (github.​com/​stsch​
iff/​seque​nceTools) with the option ‘-randomHaploid’. The pileup-
Caller module of this program was run on ancient samples, geno-
typing the SNP panel positions in pseudohaploid mode (choosing 
one random read per SNP). Genotypes of modern-day and ancient 
individuals were merged using PLINK (v. 1.90) (Purcell et al., 2007) 
and EIGENSOFT (v. 7.2.1) (Patterson et al., 2006) to create the final 
dataset for the two SNP panels (the main and secondary data-
sets). These were used in all population genetic analyses except 
CDS-based phylogenetic tree construction and for selection scans 
(Appendix S1).

2.11  |  f3-statistics

We performed outgroup-f3 statistics on the autosomal dataset using 
popstats (Skoglund et al., 2015) with ‘--not23’ and ‘--f3 vanilla’ param-
eters, using the PLINK (v. 1.90) .tped/.tfam file format, using the horse 
as outgroup (Table S3). A heatmap graph was generated from the f3 
results using heatmap.2 of the R package gplots (https://​cran.​r-​proje​
ct.​org/​web/​packa​ges/​gplots/​index.​html).

2.12  |  Multidimensional scaling

A genetic distance matrix was generated by subtracting pairwise 
outgroup-f3 values from 1. This matrix was used in multidimen-
sional scaling analysis by running the ‘cmdscale’ command in R with 
parameters ‘eig = True’ and ‘k = 2’. The first two dimensions were 
visualised in R.

2.13  |  D-statistics

We performed D-tests using either the main or secondary data-
sets, in EIGENSTRAT file format (.geno/.ind/.snp), with the ‘qpDstat’ 
module of AdmixTools (v. 7.0) (Patterson et al., 2012) with default 
parameters. The analysis was run on all possible trio combinations 
on the individual level, using horse as an outgroup. We limited 
the analyses to pairs with sufficient numbers of overlapping SNPs 
(minimum of 5000 SNPs, e.g. thus excluding Hm_1892). Results 
with absolute Z-score >3 were defined as nominally significant. 
In several figures (e.g. Figure  4), we use boxplots of individual-
based D-statistics grouped based on geography (e.g. Gobi/Tibet, 
or Anatolia); the colours of the boxplots indicate the proportion 
of individual-based tests with Z > 3. We preferred individual-
based D-tests instead of a priori defining populations, as this ap-
proach allows studying consistent behaviour among individual 
genomes within a group. Results were visualised with ggplot2 
(Wickham, 2016).

2.14  |  Autosomal CDS tree

Following (Chen et  al., 2021), we created a phylogenetic tree of 
equid lineages based on autosomal protein coding sequences 
(CDS) to facilitate alignment. We used CDS annotation from 
NCBI (Refseq Accession Number GCF_000002305.2) and chose 
the longer transcript among overlapping genes. CDS of 15 ass/
donkey genomes (Table S3) and one horse (outgroup, ENA acces-
sion SAMEA3498888) were extracted from .bam files by angsd (v. 
0.934) (Korneliussen et al., 2014) with the base with the highest 
effective depth (‘-doFasta 3’ option), and requiring a base qual-
ity of >30 and mapping quality of >30 (‘-minQ 30 -minMapQ 30’). 
Missing nucleotides were removed from resulting fasta files and 
sequences were re-aligned for each chromosome. A final CDS 
dataset was constructed by merging all chromosomes and filter-
ing all transitions. CDS selection, removing missing nucleotides, 
re-aligning, merging and transition filtering were performed 
with custom Python scripts (filter_gene.py, trim_py, merge_py, 
and remove_transitions.py respectively) (see Data Availability 
Statement). An ML tree was generated with this CDS dataset 
using RAxMLv. 8.2.12 (Stamatakis, 2014) as follows: a preliminary 
tree was constructed using the GTRCAT model, 200 bootstrap-
ping replicates were applied on the preliminary tree using the 
GTRGMMA model, and a final tree was generated by overlaying 
the calculated bootstraps on the preliminary tree. The final tree 
was visualised by R packages ape v. 5.6.2 (Paradis & Schliep, 2019) 
and phytools v. 1.0.3 (Revell, 2012).

2.15  |  Divergence time estimation

In order to estimate the divergence time between the hydrun-
tines and Asian wild assess, we used the F(A|B) statistic (Green 
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et  al.,  2010), which calculates the probability of observing a 
derived allele in individual A (with low genome quality), at the 
sites where individual B is heterozygous. In our case, individual 
A corresponds to the hydruntine cdh008, and individual B corre-
sponds to the kiang sample Kia2 (Wang et al., 2020), representing 
the Asian lineage. In total, n = 2,626,614 heterozygous positions 
were in Kia2, and alleles were polarised using EquCab2.0. We 
genotype cdh008 at these positions with SAMtools (v. 1.9) mpi-
leup, with read and base quality >30. F(A|B) was calculated by 
choosing a random allele per site. This probability was then com-
puted for different divergence times and effective population 
sizes (Ne) using the formula e

−T/(2Ne)/3 (Mualim et  al.,  2021) or 
with simulations using msprime (v. 1.0) (Baumdicker et al., 2022), 
with a generation time of 8 years, a mutation rate of 7.242 × 10−9 
and a recombination rate of 1 cM/1Mbp (Orlando et  al., 2013). 
We simulated 100 chunks of 1 Mb and calculated the mean 
F(A|B). Using the formula H = 4Neμ, we estimated Ne for Kia2 
as 62,319.3. Expected F(A|B) values were calculated for diver-
gence times ranging from 100 kya and 2.1 Mya, and for effective 
population sizes ranging from 5 k to 80 k. We determined the ex-
pected F(A|B) values, which span the observed F(A|B) value to 
find the likely time of population split. We also estimated split 
times of E. h. onager and E. a. asinus each from E. kiang with F(A|B). 
We repeated the F(A|B) calculation using only transversions 
(n = 811,814) to limit the chance of homoplasy, which resulted 
in a highly similar estimate (0.149, compared to 0.145 using all 
SNPs). The scripts are shared in the “Data Availability Statement” 
section.

2.16  |  Runs of homozygosity

ROH can be called efficiently from >5× genomes (Ceballos 
et al., 2021). We estimated ROH for cdh008 and published equid 
ass/donkey genomes (Table  S3), downsampling all .bamfiles to 
6.38× to match the lowest coverage case, cdh008. We calcu-
lated ROH with PLINK (v. 1.90) with the parameters ‘--chr-set 34 
--homozyg -homozyg-snp 30 -homozyg-kb 300 -homozyg-density 30 
-homozyg-window-snp 30 -homozyg-gap 1000 -homozyg-window-het 
3 -homozyg-window-missing 5 -homozyg-window-threshold 0.05’. 
The resulting data were merged into a single file and visualised 
in R.

2.17  |  Genome-wide heterozygosity estimation

We downsampled .bam files from published equid ass/donkey ge-
nomes by downsampling these to 6.38× coverage, that is, the cover-
age of the Anatolian cdh008. Using these and cdh008, we called de 
novo variants in each genome at all positions with 5–13× depth using 
SAMtools (v. 1.9), filtered these sites to only keep transversions (to 
avoid the PMD effect), and determined the proportion of heterozy-
gous loci across the transversion.TA
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2.18  |  Masking against reference bias

Ancient genomes and/or genomes mapped to divergent refer-
ence genomes can be subject to reference biases (Günther & 
Nettelblad, 2019), while masking by changing polymorphic sites to N 
can mitigate this bias (Koptekin et al., 2023). We accordingly masked 
EquCab2.0 at 2,146,416 polymorphic sites in the main SNP dataset, 
repeated alignment, and estimated heterozygosity among a selected 
set of individuals (Sp-5, Kia2, Ona and cdh008). This procedure does 
not involve masking hydruntine-specific derived positions, but this is 
not expected to account for the stark heterozygosity differences we 
observe among lineages.

3  |  RESULTS

We extracted ancient DNA from 15 equid tooth and bone samples 
excavated in two Central Anatolian sites, 11 from Çatalhöyük and 
four from Çadır Höyük (Figure  1c). We generated genome-wide 
data from these using shotgun sequencing (Table S1) and obtained 
0.02%–11.35% (median = 0.07%) of endogenous DNA by mapping 
to the horse reference genome (EquCab2.0). We chose three sam-
ples (cdh008, cdh010 and chh003) with >5% endogenous DNA 
and authenticity signals (Section 2) for further sequencing (Table 1, 
Figure S1). We thus produced three genomes with nuclear coverages 
of 6.38×, 0.72× and 0.57× (Table 1, Table S2). Radiocarbon dating 
of the skeletal material placed all three individuals within the early/
mid-first millennium (Iron Age) in Anatolia (Table 1, Figure 1d). We 
also constructed mitogenome sequences of these three individuals 
(Section 2).

3.1  |  Genetic analyses assign the iron age Anatolian 
wild ass individuals to hydruntines

During the Bronze and Iron Ages, horses and the domestic donkey 
were common in Anatolia, while hydruntines and hemiones were 
also present, the latter restricted to Southeast Turkey (Table  S1 
in Appendix  S1 see references therein). Due to a lack of suffi-
cient diagnostic characteristics, the three specimens were identi-
fied osteologically only to the level of the genus Equus (Table  S2 
in Appendix S1). As a first step towards characterising the three 
Anatolian individuals, we used the Zonkey pipeline (Schubert 
et al., 2017), which classified all three individuals as ‘Asian wild ass-
related’ (Table S1).

We then compared mtDNA data from these three Anatolian 
equids with published partial mtDNA sequences from 82 hemiones 
(Bennett et al., 2017; Huang et al., 2015; Orlando et al., 2009; Wang 
et  al.,  2020), 21 morphologically-identified hydruntine individuals 
(Bennett et  al., 2017; Catalano et  al.,  2020; Orlando et  al.,  2009; 
Schubert et al., 2016) and seven other equids (Bennett et al., 2017; 
Jónsson et  al.,  2014; Wang et  al., 2020). We used a 249-bp-long 

fragment shared across all samples to construct a haplogroup net-
work; we also used a 361 bp-long D-loop fragment for BEAST anal-
ysis (Table  S3). In both analyses, mtDNA sequences of the three 
Anatolian equids clustered with published hemione–hydruntine se-
quences with 100% support (Figures S3 and S4). Moreover, the three 
new sequences were a sub-branch of the H1 haplotype clade (as de-
fined by Bennett et al. (2017)). H1 is the most prevalent mtDNA hap-
lotype among the 19 hydruntine individuals in this dataset, appears 
exclusive to hydruntine, and was already detected among Anatolian 
hydruntines from c.7850–2500 BCE (Bennett et al., 2017; Guimaraes 
et al., 2020) (Figure S4). Together, these results indicate that the mi-
tochondrial lineage of the three Anatolian equids belonged to the 
wild asses of Eurasia, and was more closely related to hydruntines 
than to hemiones.

We investigated this further using complete mtDNA sequences, 
taking advantage of a recently published near complete mtDNA 
sequence of a morphologically identified E. h. hydruntinus/E. hy-
druntinus specimen from Sicily (Catalano et  al., 2020), along with 
full mtDNA sequences from nine ancient and modern-day equids 
(Section  2, Table  S3). Again, in both the Bayesian and ML trees 
(Figure  2a, Figure  S5) the Anatolian wild asses clustered with the 
published hydruntine with full support. The mitochondrial phylog-
enies further suggested that the Eurasian wild asses radiated into 
four groups within a relatively narrow time range: (a) the hydrun-
tine group encompassing European and Anatolian individuals, (b) 
the Iranian onagers and the Syrian hemippes, (c) the Gobi kulans and 
the Tibetan kiangs and (d) the Central Asian kulans represented by a 
single individual. The order of these radiation events is unclear, how-
ever, and is estimated by BEAST analyses to have occurred within 
a relatively short time frame of 300,000 years, between ~0.8 and 
0.5 Mya.

The above analyses suggest that the three Anatolian wild asses 
studied here belonged to the hydruntine lineage. However, mtDNA 
phylogenies may be incongruent with the overall phylogenetic his-
tory of a species due to drift, selection or incomplete lineage sort-
ing (e.g. Toews & Brelsford, 2012). We hence asked whether the 
whole genome data also support hydruntine ancestry for the three 
Anatolian wild asses. We compiled a list of ~2 million autosomal 
transversion SNPs using published asinus and hemionus genomes 
(Section 2.9). We genotyped the three Anatolian wild ass genomes, 
13 published modern-day ass/donkey genomes, as well as three an-
cient onagers from Iran and three ancient hemippes from the Middle 
East (Table  1, Figure  1c, Table  S3). We then constructed an MDS 
plot of genomic diversity among these genomes with the outgroup 
f3-statistic (Section 2) (Figure 3, Figure S6, Table S4). This revealed 
a unique position for the three Anatolian wild asses, distinct from 
the two other Asiatic wild ass groups included (Gobi kulans/kiangs, 
and the onagers/hemippes). Because the hydruntine is the only 
other wild ass lineage identified in the fossil record to have lived in 
Holocene Anatolia, together with the mtDNA evidence, our results 
strongly suggest that the three Anatolian wild asses belonged to the 
extinct hydruntine lineage.
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    |  9 of 19ÖZKAN et al.

F I G U R E  2 (a) A Bayesian phylogenetic tree constructed using a 16,790-bp long consensus sequence of the whole mitochondrial DNA 
among various equid lineages. Numbers on the internal branches show posterior probability support in percentages and the numbers on the 
nodes show the estimations for divergence times in years. The purple node bars show the 95% confidence intervals for divergence times. The 
colour codes correspond to those in Figure 1. (b) A maximum likelihood tree was constructed using concatenated protein coding sequences 
(29,384,180 bp) across the 15 genomes using only transversion sites. Numbers on the internal nodes show bootstrap support. External nodes 
indicate the genome/individual IDs, with species names in parentheses. A version showing branch lengths can be found in Figure S9.
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3.2  |  Whole genome analyses support 
hemiones and hydruntines as sister clades

Because the hydruntine has yet been genetically described only 
through mtDNA, we leveraged upon the new Anatolian genomes to 
investigate evolutionary relationships among asses. Based on par-
tial mtDNA sequences, it had been previously suggested that hy-
druntines were most closely related to hemiones, to the exclusion 
of other equids (Bennett et al., 2017; Catalano et al., 2020; Orlando 
et al., 2006, 2009). Our results above are fully consistent with this 
hypothesis, since the Anatolian and modern-day Asiatic wild ass 
individuals cluster together in the mtDNA analyses to the exclu-
sion of African asses (Figure 2, Figures S3 and S4). Anatolian wild 
asses are also closer to hemiones in the MDS- and heatmap-based 
summaries of nuclear genomic variation using outgroup-f3 scores 
(Figure 3; Figures S6 and S7, Table S4). We further tested this pat-
tern with D-statistics, employing the c.2 million autosomal trans-
version SNP panel (Section 2) (Table S5). D-tests of form D(Horse, 
Anatolia; Africa, Non-Anatolia) and D(Horse, Non-Anatolia; Africa, 
Anatolia), where Non-Anatolia refers to any Asian hemione, kiang, 
onager and hemippe individual, separately in each comparison, 
were all significantly positive (Z > 3; Section 2), in line with the no-
tion that Asian and the hydruntines represent sister taxa (Figure 4; 
Table S5). We replicated the same results using a secondary data-
set of c.2 million transversions (Schubert et  al., 2017) (Section 2) 
(Figure S8, Table S6).

3.3  |  Hemiones and hydruntines are reciprocally 
monophyletic

Earlier analyses of partial mtDNA sequences had suggested that 
the Asian hemione versus hydruntine divide could be artificial, with 

some hemiones appearing closer to hydruntines than to other he-
miones (Bennett et al., 2017; Orlando et al., 2009). Meanwhile, the 
identification of hydruntines as one of at least three hemione sub-
groups in MDS analyses (Figure 3, Figure S6) prompted us to evalu-
ate the relationships between these three subgroups. We tested this 
question further through a number of approaches.

We first constructed an ML tree using whole genome data of 
13 equids and using concatenated protein-coding sequences, lim-
ited to transversions (Section  2). This indicated reciprocal mono-
phyly between the Asiatic wild asses (9 genomes representing the 
kiang, hemione, onager and hemippe) and the hydruntine clade 
(Anatolian wild asses) (Figure 2b, Figure S9; compare with Figure 2a 
and Figure  S5). The Asian wild asses themselves further split into 
two groups, the Middle Eastern hemippe and onager, and the Gobi/
Tibet cluster comprising the kiang and kulan.

We further used D-tests to clarify relationships between 
Asian and Anatolian wild asses. We tested monophyly of the 
Anatolian wild ass genomes with D(Horse, AnatoliaX; AnatoliaY, 
Non-Anatolia), where AnatoliaX and AnatoliaY refer to different 
Anatolian wild asses, and Non-Anatolia refers to any individual he-
mione, kiang, onager or hemippe (Section 2, Table S5). The three 
Anatolian wild asses formed their own clade to the exclusion 
of all Asiatic wild asses, with all 60 relevant comparisons being 
significant in this direction (Z > 3; Section 2) (Figure 4, Table S5). 
We also conducted reciprocal tests of the form D(Horse, Non-
AnatoliaZ; AnatoliaX, Non-AnatoliaW), where AnatoliaX refers to 
any Anatolian wild ass genome, while Non-AnatoliaZ and Non-
AnatoliaW refer to genomes of different hemione, kiang, onager 
or hemippe individuals. In all comparisons, each hemione indi-
vidual (modern-day or ancient) showed higher affinity to other 
hemiones over Anatolian individuals (Z > 3) (Figure  4, Table  S5). 
The evidence thus supports reciprocal monophyly between the 
Anatolian and Asian wild asses.

F I G U R E  3 Multidimensional scaling plot of (a) donkey and wild asses and (b) only wild asses generated using a distance matrix based on 
(1-outgroup f3) statistics calculated from the autosomal variation dataset consisting of 2,146,461 sites. ANAT: Anatolian samples reported 
in this article; Anc_HMP: Ancient E. h. hemippus; Anc_ONA: Ancient E. h. onager; ASI: E. asinus; HEM: E. hemionus; KIA: E. h. kiang; ONA: E. h. 
onager; SOM: E. somalicus.
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3.4  |  Evidence for gene flow between 
hydruntines and Middle Eastern wild asses

We next asked whether the Anatolian wild asses might be symmetri-
cally related to all Asian wild ass lineages. Following our earlier ob-
servations (Figures 2 and 3), here we divided Asiatic wild asses into 
Gobi/Tibet and Middle East clusters. We then performed D-tests 
of form D(Horse, Anatolia; MiddleEast, Gobi/Tibet), where MiddleEast 
represents Iranian onager and Syrian hemippe individuals while 
Gobi/Tibet consists of Gobi kulans and Tibetan kiangs. We found 
affinities of all three Anatolian wild asses towards the modern-
day Iranian onager and a museum specimen of hemippe, Hm_1864 
over other Asian wild asses, including other onagers and hemippes 
(27 of 30 comparisons with Z > 0; 23 of 30 comparisons with Z > 3) 
(Figure 4, Figure S10, Table S5). This observation is even more pro-
nounced (30 of 30 comparisons with Z > 3) in comparisons using the 
secondary dataset (Figure S11, Table S6). This would be compatible 
with gene flow between Middle Eastern hemiones and hydruntine 
populations in Southwest Asia.

We investigated this further by testing D(Horse, Anatolia; 
MiddleEastX, MiddleEastY) where we compared the genetic affinity 
of Anatolian hydruntines between the onager and/or hemippe in-
dividuals. Using the main variation panel we observed slight affin-
ity towards the 19th century hemippe over the other hemippe and 

onagers (12 of 12 with Z > 0, 5 of 12 with Z > 3; Figure S12). Using 
the secondary dataset we found a higher affinity to the modern-day 
onager over all other Middle East wild ass genomes (12 of 12 with 
Z > 3; Figure S13). Although we cannot yet fully determine the exact 
nature of the possible admixture, we hypothesise that gene flow 
from hydruntine to the onager and hemippe lineages could explain 
the observed patterns (see Section 4).

3.5  |  The timing of the hydruntine and Asian wild 
ass split

The above analyses suggest that hydruntines split from other 
Eurasian wild asses relatively early in their history, although they 
might have admixed with Middle Eastern wild asses lineages in more 
recent times as reflected in the autosomal data. Hence we can es-
timate the hydruntine-Asiatic wild ass split time using mtDNA and 
also autosomal comparisons between hydruntines and Gobi/Tibet 
wild assess. As discussed above, the mtDNA data indicated a split 
involving the various Eurasiatic lineages between 0.8–0.5 Mya. We 
further used the F(A|B) method for estimating the split time be-
tween hydruntines and kiang from the Gobi/Tibet region using au-
tosomal DNA, using both a theoretical estimate and also simulations 
(Section 2). The intersection of the observed and expected statistics 

F I G U R E  4 Boxplots showing D-statistics calculated between wild ass genomes from different regional groups, using autosomal SNPs 
from the main dataset. The statistics are calculated as D(Horse, Test; Pop1, Pop2), with Test shown on the top, and Pop1 and Pop2 on the 
left and right, respectively. All tests are performed using individual genomes chosen from regional groups. Anatolia: cdh008, cdh010 and 
chh003; Gobi/Tibet: Aw1, Aw2, Aw3, Kia1 and Kia2; Middle East: GT64 and Hm_1864, Onager, Hasanlu3459, Sagzabad; Africa: Asinus, 
Somalicus. Each boxplot thus shows a set of D-statistics involving the regional populations shown. The colour gradient from pink to black 
represents the fraction of D-tests in that comparison that are nominally significant (Z > 3). For instance, D(Horse, Anatolia; Middle East, Middle 
East) involves 30 unique tests, only 20% of which reach Z > 3. In comparison, D(Horse, Anatolia; Anatolia, Middle East) also involves 30 unique 
tests, only 100% of which reach Z > 3, marking that the three Anatolians cluster genetically. See Table S5 for the D-test results. See Figure S8 
for the same figure drawn using the secondary dataset.
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suggests a most likely population split between 0.6 and 1.2 Mya 
(Figure 5). This overlaps the mtDNA split time confidence interval 
between 0.6 and 0.8 Mya.

Given an early split and distinct phenotypes, we tested for 
possible hydruntine-specific coding sequence changes that could 
indicate adaptations unique to this lineage (see Appendix  S1: 
‘Selection and Relaxation Scans on Coding Sequences’). We first used 
the PAML codeml framework (Yang, 2007), but did not identify 
hydruntine-specific protein coding changes that reached genome-
wide significance (Appendix S1, Table  S7). Second, we devised an 
alternative approach, the Pairwise McDonald–Kreitman statistic, 
where we combined the McDonald–Kreitman test (Stoletzki & Eyre-
Walker, 2011) with the population branch statistic (Yi et al., 2010). 
This approach identified 155 genes that deviated significantly from 
the rest of the coding genes in terms of excess differentiation on the 
hydruntine lineage (p < .01 after Benjamini–Hochberg correction). 
However, this gene set did not show functional enrichment relative 
to the rest of the genome (Appendix S1, Table S8, Figure S15).

3.6  |  Severely depleted genetic diversity in the 
Anatolian wild ass signals population decline

To our knowledge, these three Anatolian individuals are the latest 
directly dated hydruntines known, if not the latest recorded hy-
druntines to date (Crees & Turvey, 2014; Guimaraes et  al., 2020). 
Zooarchaeological evidence has suggested that by the 3rd mil-
lennium BCE the European population had already gone extinct, 
while the population was possibly dwindling or lost in Southwest 
Asia, including in Anatolia, Iran and the Caucasus (Boulbes & van 
Asperen, 2019; Crees & Turvey, 2014). We thus asked whether we 
might detect signatures of population decline in our genetic data.

We first estimated ROH, where short ROH can indicate past 
inbreeding caused by low population size (Ceballos et  al.,  2018). 
We called ROH in the highest coverage Anatolian wild ass ge-
nome (cdh008) and compared these ROH estimates with those 
from genomes of other asses down-sampled to the same coverage 
(Section  2). African asses had high ROH loads (Figure  6a), as ex-
pected, since these populations are known to have experienced re-
cent bottlenecks (Jónsson et al., 2014; Renaud et al., 2018). Kiangs, 
kulans and onagers carried relatively low ROH loads, implying higher 
diversity than their African counterparts. In turn, cdh008 carried 
a high number of short runs with complementing long runs, highly 
similar to the African genomes. The fraction of regions within ROH 
(FROH) is also high in cdh008 (0.011%) as opposed to other wild 
asses (0.001%–0.008%, median: 0.004%) save Somali wild ass 
(0.021%).

We investigated this further by estimating heterozygosity from 
de novo-called transversion variants across the same genomes. The 
hemiones had the highest heterozygosity, followed by donkeys and 
the Somali wild ass. The cdh008 genome harboured the lowest het-
erozygosity (0.021), even below the African group known to have 
undergone several bottlenecks (Figure 6b). We confirmed this result 

was not an artefact of reference bias in cdh008 genotypes by repli-
cating the result using a reference genome masked at polymorphic 
sites (Section 2) (Figure  S14). Combined with ROH analysis, these 
observations suggest that the Anatolian population was in strong 
decline already by the first millennium BCE, which is also supported 
by its rare occurrence in the archaeological record.

Finally, we asked whether a small effective population size, 
as indicated by the high ROH load, may have led to elevated non-
synonymous mutation load in the hydruntine lineage due to relaxed 
selection (Rogers & Slatkin, 2017). We compared PAML-estimated 
dN/dS ratios between cdh008, Asian, and African genomes 
(Section 2), using only genes under purifying selection (dN/dS < 1). 
This revealed slightly but significantly lower values in cdh008 than 
the other two genomes (Figure S16).

4  |  DISCUSSION

Our analyses of palaeogenomic data from three Anatolian wild asses 
radiocarbon dated to the first millennium BCE showed that all three 
carried a putative hydruntine-specific mitochondrial haplotype (H1; 
Bennett et al., 2017), their mtDNA sequences clustered with those 
of morphologically-identified hydruntine (E. hydruntinus or E. hemio-
nus hydruntinus) sequences with full support, and all three genome 
profiles fell outside the diversity of known African or Asiatic ass 
genomes. Together, the evidence strongly indicates that the three 
Anatolian wild ass individuals belonged to the extinct hydruntine 
E. hydruntinus/E. h. hydruntinus, no genomic data of which has been 
published hitherto.

Although it has been termed the ‘European wild ass’, accord-
ing to archaeozoological data the hydruntine range included 
Southwest Asia and possibly even North Africa (reviewed in 
Boulbes & van Asperen, 2019). In Anatolia, hydruntines were not 
uncommon in zooarchaeological assemblages until the Bronze Age 
(Arbuckle, 2013; Arbuckle & Öztan, 2018; Bennett et  al.,  2017), 
although their presence largely depends on the archaeological site 
and subsistence strategies (Martin & Russell, 2012). At Neolithic 
Çatalhöyük, for example, small and medium-sized equids (E. hy-
druntinus/hemionus) are evidenced by bones in daily and social 
contexts (Pawłowska,  2020) and also in art, although relatively 
rare; for instance, they appear in one set of wall paintings, while 
phalanges were used as raw material for making idols, one of 
which is known as the first bone figurine from the site (Martin & 
Russell, 2012; Pawłowska & Barański, 2020).

Until now, the last hydruntine detected on a genetic basis in 
Anatolia was dated to ~2200 BCE (Guimaraes et al., 2020). In Iran, 
osteologically identified specimens were dated to the second mil-
lennium BCE (Mashkour et al., 1999). Our three Anatolian wild asses, 
dated to early/middle first millennium BCE, are thus the last hydrun-
tines yet identified.

Our study reveals a number of novel insights into the phylogenic 
history of hydruntines, represented by the three Anatolian genomes. 
First, using genomic evidence we confirm that Asiatic hemiones and 
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hydruntines were sister taxa to the exclusion of African asses, as 
suggested earlier based on osteological data (Burke et  al.,  2003; 
Eisenmann & Mashkour,  1999; Orlando et  al.,  2006) and mtDNA 
analyses (Bennett et  al.,  2017; Catalano et  al.,  2020; Orlando 
et  al.,  2006, 2009). Thus, we may speak of Late Pleistocene and 

Holocene Eurasiatic wild asses as a broadly coherent evolutionary 
group.

Our mitogenome phylogeny places hydruntines within Asiatic 
hemione diversity, splitting after the Central Asian kulan, although 
with limited statistical support (Figure 1a). In contrast, our nuclear 

F I G U R E  5 Population split time estimation of Anatolian wild ass (cdh008), E. a. asinus and E. h. onager from Asian wild ass based on the 
F(A|B) statistic. F(A|B) is the probability of observing a derived allele in the Anatolian wild ass, E. a. asinus or E. h. onager at the positions 
where the Asian wild ass genome is heterozygous (Section 2). Observed and expected F(A|B) values, calculated using the formula e−T/(2N)/3 in 
panel (a), and using population genetic simulations in panel (b). We explored the space of divergence times between 100 kya to 2 Mya, and 
population sizes ranging from 5 k to 80 k.

F I G U R E  6 (a) Total number versus the total length (sum) of runs of homozygosity (ROH) tracks over 1.5 Mb. The Spearman correlation 
coefficient and p-value are shown in the inset. (b) Heterozygosity calculated across 2,146,416 transversion sites.
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genome phylogeny indicates hydruntines were the earliest diverg-
ing branch of Eurasiatic wild asses, with full support (Figure 1b). The 
difference highlights difficulties in resolving epitomies even with 
full mitogenomes, likely due to the unique and non-recombining 
nature of this marker. Meanwhile, both mtDNA and nuclear ge-
nome analyses converge in, suggesting that hydruntines split from 
Asiatic hemiones within a time frame of 0.5–1 Mya, most likely 
between 0.6 and 0.8 Mya. This would be compatible with the first 
fossil records of E. hydruntinus in Europe c.600 kya (Boulbes & van 
Asperen, 2019).

Our mitochondrial and nuclear analyses also indicate the radia-
tion of at least three different lineages within a relatively short time 
frame: one encompassing the hydruntines, one encompassing the 
Mongolian kulans and the Tibetan kiangs, and another including 
the Iranian onagers and Syrian hemippes. This suggests that geo-
graphical separation may have been the main driving force behind 
the divergence of these lineages. It was proposed previously that 
the European hydruntine may have split from the Central Asiatic 
wild ass populations and evolved independently in Europe be-
fore colonising Anatolia in the Late Pleistocene/Early Holocene 
(Bennett et  al., 2017). In our D-tests, hydruntines indeed appear 
distinct from all other Asiatic wild asses tested, including hemi-
ones from Iran and Syria (as well as those in the Caucasus; Bennett 
et al., 2017).

This supports the notion that the hydruntine lineage initially 
evolved in isolation from Middle Eastern hemiones, in Europe, where 
it evolved its unique phenotypes such as a short muzzle, and may 
thus deserve an independent taxonomic status from other hemi-
ones, as previously proposed (Boulbes & van Asperen, 2019; van 
Asperen,  2012). However, because (i) our genome dataset does 
not include the full diversity of hemiones (e.g. the Indian khur and 
Central Asiatic wild ass genomes are not yet sequenced), (ii) we lack 
the information about full hydruntine diversity through ages and its 
geographic range and (iii) our Anatolian samples represent a popu-
lation that appears to have undergone a severe bottleneck, the re-
lationships between hydruntines and Asiatic hemiones remains an 
open question.

We do not know when the hydruntine expanded into Anatolia 
from Europe. The emergence of a recent sympatric zone may ac-
count for the traces of gene flow we detect between hydruntines and 
Middle Eastern wild asses. Such gene flow can be inferred from the 
asymmetric relationships between hydruntines and Middle Eastern 
vs. Gobi/Tibet hemiones, with hydruntines being on average closer 
to the former (Figures S10 and S11, Tables S5 and S6). More inter-
estingly, the hydruntine has a higher affinity to the modern onager 
and the 19th century hemippe genomes than to Iron Age onagers 
or a Neolithic hemippe respectively (although the result is variable 
between the SNP panels) (Figures S12 and S13, Tables S5 and S6). 
These observations imply that gene flow was directional, occurring 
from hydruntines into Middle Eastern hemiones in recent times. 
This is because gene flow from the onagers into hydruntines would 
not lead to asymmetric relationships with more recent onagers and 
hemippes. Alternatively, population structure within both onagers 

and hemippes could be an explanation, albeit being less parsimoni-
ous, as it would require the same type of structure independently 
maintained in both onagers and hemippes.

Gene flow between hydruntines and hemiones may not be sur-
prising, given evidence for the widespread introgression among 
equids (Jónsson et  al., 2014), and the possibility that hydruntines 
may have lived in sympatry with these Middle Eastern hemiones 
in Southwest Asia during the Holocene (Crees & Turvey,  2014; 
Eisenmann & Mashkour, 1999; Orlando et al., 2006). Putative gene 
flow between hydruntines and Middle Eastern hemiones could be 
considered a reason for a taxonomic grouping of hydruntines within 
E. hemionus. At the same time, the limited extent of these admixtures 
may suggest that these populations were distinct enough to not fully 
interbreed, supporting the idea that the hydruntine had already ex-
perienced a large portion of the speciation process separating them 
from Middle Eastern wild asses. Similar examples of partial admix-
ture between sister taxa have been reported for various groups of 
organisms (Burbrink et al., 2022; Jónsson et al., 2014).

Our results also provide hints on possible extinction dynam-
ics of the hydruntine in Southwest Asia. Our ROH and heterozy-
gosity analyses on the first millennium BCE genome from Çadır 
Höyük suggest low diversity, on a par with the critically endan-
gered African wild ass (Moehlman & Kebede, 2014). Our analysis 
is admittedly limited by being based on a single genome of <10× 
coverage; nevertheless, excess of short ROH is a particular signa-
ture created by small long-term effective population size (Ceballos 
et al., 2018) and our results may thus be considered informative 
about population-level dynamics. Low diversity could have in-
creased the risk of extinction (Newman & Pilson, 1997). Low ef-
fective population size itself could have various non-exclusive 
causes, including habitat fragmentation as a result of human 
activity and/or climatic events, or human predation (Bennett 
et al., 2017; Boulbes & van Asperen, 2019; Cai et al., 2021; Crees 
& Turvey, 2014; Spassov & Iliev, 2002). It is notable that the re-
mains of the three individuals studied here were recovered from 
residential or midden contexts (Table S2 in Appendix S1) and were 
likely consumed by humans. Meanwhile, the lack of an elevated 
dN/dS signal in the cdh008 genome is notable, given high levels 
of damaging variant loads in populations subject to strong bot-
tlenecks (e.g. Bosse et  al.,  2019; Robinson et  al.,  2019; Rogers 
& Slatkin, 2017). One possibility is that the presumed reduction 
in the hydruntine population size may have been too recent and 
rapid to visibly impact functional variation. The genomic analysis 
of additional hydruntine individuals from the Holocene may clarify 
the exact dynamics of its extinction.

A final question remaining is how much longer hydruntine popu-
lations survived in Southwest Asia, beyond the individuals we sam-
pled from Anatolia. The trend of higher affinity of hydruntines to 
the modern-day than to Iron Age onagers implies that hydruntines 
may have admixed with onagers after the Iron Age (Figure  S12). 
Interestingly, classical authors such as the Roman historian Strabo 
(Geography, Book XII), Varro (De Re Rustica, Book II), and Pliny the 
Elder (Natural History) mention the presence of ‘wild asses’ (onagri) 
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in the vicinity of ancient Late Tatta (modern-day Tuz Gölü in Central 
Anatolia), and also in the Anatolian dry grasslands of Lycaonia, 
Garsauira and Bagadania. Therefore, it seems possible that these 
mentions may be referencing hydruntine populations surviving on 
the central Anatolian plateau (in the Konya-Ereğli plain, Cappadocia, 
and/or Kayseri) into the first millennium AD. Our results underscore 
the need for further archaeogenomics-based taxonomic assignment 
of non-caballine equid material from Southwest Asia. This would 
help fully fathom the extinction dynamics of the hydruntine.
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